
REVERSE 

ENGINEERING –

CLASS 0X05

Cristian Rusu

PROCESS MEMORY LAYOUT



LAST TIME

• static analysis

• dynamic analysis

.



TODAY

• details on the structure of processes

.



• syscall for process execution

• EXEC

• reads the file header

• executes all LOAD directives

• execution is then taken over by entry point address (_start first 

and only then main())

https://man7.org/linux/man-pages/man3/exec.3.html

RUNNING A STATIC BINARY



• symbols are references (to variables and functions) in binaries

• nm a2.out

• in gdb when using „break main”, main here is a symbol

• function name is in the binary, but it is not essential to execution

• you can remove the symbols with the strip command

• stripping symbols

• debug and RE are much for difficult without symbols

• binaries are smaller when stripped

• static linking

• symbols from external libraries are included in the binary at link time

• dynamic linking

• Links to symbols from external libraries are included in the binary at 
link time and at run time the loader resoves the links

• resolving symbols at process run or runtime

gcc test.c -o test -static

RUNNING A STATIC BINARY



• dynamic linking

• for example: libc.so

• link done by the dynamic linker

• library machine code is usually in shared memory location

• when do you compute symbol addresses? binding

• when program starts: immediate binding

• when symbol is referenced for the first time: lazy binding

• shared libraries

• lib + name + -major + .minor + so

• libc-2.31.so

• lib + name + .so + major

• libc.so.6

.

STATIC AND DYNAMIC BINARIES



• a point that can cause confusion

• libraires can also be of two types:

• static

• library is added at compile time

• dynamic/shared

• library is linked at execution

• no recompilation needed

• is in shared memory

• Position Independent Code (Position Independent Execution)

• Global Offset Table

.

STATIC AND DYNAMIC BINARIES



• a binary file that is running

• memory space of a process

.

PROCESSES

for function call and 

local variables

dynamic memory



• two processes in memory

.

PROCESSES

process 1 process 2

How come two different processes can access the same mermory address?

Well, they cannot they can access the same logical, but not physical, addreses!



• fiecare proces „crede” că poate accesa întreaga memorie

• adică nu par să fie limite la adresele folosite

• deci fiecare proces poate accesa adrese virtuale (sau logice)

• adică ambele procese pot accesa adresa 0x0000ABCD, de exemplu

• dar defapt memoria este una singură (memoria fizică)

• procesul 1 accesează 0x0000ABCD logic dar 0x0043FFDE fizic

• procesul 2 accesează 0x0000ABCD logic dar 0x0A567BCE fizic

• adresele virtuale sunt translatate în adrese fizice

• SO-ul, kernel-ul se ocupă de asta

• dar calculele se realizează și în hardware, pentru eficiență

.

PROCESSES



https://en.wikipedia.org/wiki/Physical_address

PROCESSES

• virtual vs. physical memory addresses



• implemented in hardware

https://en.wikipedia.org/wiki/Memory_management_unit

PROCESSES

TLB is a cache to speed-up the memory address translation



• the memory view from the operating system

• observ pagination, fragmentation

.

PROCESSES



• with shared libraries

.

PROCESSES

process 1 process 2



• PIE vs. NO PIE (this is done by the compiler)

.

STATIC AND DYNAMIC BINARIES

NO PIE executables are executables

PIE executables are shared libraries



• ASLR vs. NO ASLR

.

STATIC AND DYNAMIC BINARIES

NO ASLR ASLR



• NO ASLR

.

STATIC AND DYNAMIC BINARIES



• ASLR

disable ASLR: echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

STATIC AND DYNAMIC BINARIES



WHAT WE DID TODAY

• memory layout

• discussion related to the STACK

.



NEXT TIME ...

• ASLR

• ROP

.



• Creating and Linking Static Libraries on Linux with gcc, 
https://www.youtube.com/watch?v=t5TfYRRHG04

• Creating and Linking Shared Libraries on Linux with gcc, 
https://www.youtube.com/watch?v=mUbWcxSb4fw

• Performance matters, https://www.youtube.com/watch?v=r-
TLSBdHe1A

• Smashing the stack, 
https://paulmakowski.wordpress.com/2011/01/25/smashing-the-stack-
in-2011/

• Stack Canaries – Gingerly Sidestepping The Cage, 
https://www.youtube.com/watch?v=c5ORCYdcOKk

• Stack protections in Windows, https://learn.microsoft.com/en-
us/cpp/build/reference/gs-buffer-security-check?view=msvc-170

the OG: https://insecure.org/stf/smashstack.html

REFERENCES

https://www.youtube.com/watch?v=t5TfYRRHG04
https://www.youtube.com/watch?v=mUbWcxSb4fw
https://www.youtube.com/watch?v=r-TLSBdHe1A
https://www.youtube.com/watch?v=r-TLSBdHe1A
https://paulmakowski.wordpress.com/2011/01/25/smashing-the-stack-in-2011/
https://paulmakowski.wordpress.com/2011/01/25/smashing-the-stack-in-2011/
https://www.youtube.com/watch?v=c5ORCYdcOKk
https://learn.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check?view=msvc-170


.


	Slide 1: Reverse Engineering – Class 0x05 
	Slide 2: Last time
	Slide 3: today
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: What we did today
	Slide 20: Next time ...
	Slide 21: references
	Slide 22

